All Issue

2023 Vol.32, Issue 4

Original Articles

31 October 2023. pp. 257-266
Abstract
References
1
Ahn C.K., Y.W. Choi, B.G. Son, and J.S. Kang 2003, Production of high quality tomato seedlings by CO2 and temperature control in glass house. Hortic Environ Biotechnol 44:182-186. (in Korean)
2
An S.W., J.H. Bae, H.C. Kim, and Y. Kwack 2021, Production of grafted vegetable seedlings in the republic of Korea: achievements, challenges and perspectives. Hortic Sci Technol 39:547-559. doi:10.7235/HORT.20210049 10.7235/HORT.20210049
3
Atwater D.Z., J.J. James, and E.A. Leger 2015, Seedling root traits strongly influence field survival and performance of a common bunchgrass. Basic Appl Ecol 16:128-140. doi:10.1016/j.baae.2014.12.004 10.1016/j.baae.2014.12.004
4
Busso C.A., D.D. Briske, and V. Olalde‐Portugal 2001, Root traits associated with nutrient exploitation following defoliation in three coexisting perennial grasses in a semi‐arid savanna. Oikos 93:332-342. doi:10.1034/j.1600-0706.2001.930216.x 10.1034/j.1600-0706.2001.930216.x
5
Choi H.S., and H.T. Cho 2019, Root hairs enhance Arabidopsis seedling survival upon soil disruption. Sci Rep 9:11181. doi:10.1038/s41598-019-47733-0 10.1038/s41598-019-47733-031371805PMC6671945
6
Fan X.X., Z.G. Xu, X.Y. Liu, C.M. Tang, L.W. Wang, and X.L. Han 2013, Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci Hortic 153:50-55. doi:10.1016/j.scienta.2013.01.017 10.1016/j.scienta.2013.01.017
7
Foxx A.J., and A.T. Kramer 2020, Variation in number of root tips influences survival in competition with an invasive grass. J Arid Environ 179:104189. 10.1016/j.jaridenv.2020.104189
8
Hetrick B.A.D. 1991, Mycorrhizas and root architecture. Experientia 47:355-362. 10.1007/BF01972077
9
Jang Y., H.J. Lee, C.S. Choi, Y. Um, and S.G. Lee 2014, Growth characteristics of cucumber scion and pumpkin rootstock under different levels of light intensity and plug cell size under an artificial lighting condition. Protected Hort Plant Fac 23:383-390. (in Korean) doi:10.12791/KSBEC.2014.23.4.383 10.12791/KSBEC.2014.23.4.383
10
Jeong B.R., S.J. Hwang, and N.J. Kang 2016, Plug seedling. GSpress, Jinju, Korea, p 11. (in Korean)
11
Jo H.G., H.W. Jeong, H.R. Lee, S.M. Kwon, H.S. Hwang, and S.J. Hwang 2021, Growth of tomato and pepper grafted plug seedlings under different shading condition during acclimatization after graft-taking. J Bio-Env Con 30:10-18. (in Korean) doi:10.12791/KSBEC.2021.30.1.010 10.12791/KSBEC.2021.30.1.010
12
Kozai T., G. Niu, and M. Takagaki 2019, Plant factory: an indoor vertical farming system for efficient quality food production. Academic press, ed 2, Cambridge, USA, pp 4-5.
13
Kwack Y., S.W. Park, and C. Chun 2014, Growth and development of grafted cucumber transplants as affected by seedling ages of scions and rootstocks and light intensity during their cultivation in a closed production system. Hortic Sci Technol 32:600-606. doi:10.7235/hort.2014.14039 10.7235/hort.2014.14039
14
Lee H.J., J.H. Ha, S.G. Kim, H.K. Choi, Z.H. Kim, Y.J. Han, J.I. Kim, Y. Oh, V. Fragoso, K. Shin, T. Hyeon, H. Choi, K.H. Oh, I.T. Baldwin, and C.M. Park 2016a, Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots. Sci Signal 9:ra106. doi:10.1126/scisignal.aaf6530 10.1126/scisignal.aaf6530
15
Lee J.E., Y.S. Shin, H.W. Do, J.D. Cheung, and Y.H. Kang 2016b, Effect of seedling quality and growth after transplanting of Korean melon nursed under LED light sources and intensity. Protected Hort Plant Fac 25:294-301. (in Korean) doi:10.12791/KSBEC.2016.25.4.294 10.12791/KSBEC.2016.25.4.294
16
Lee N., H.Y. Wetzstein, and H.E. Sommer 1985, Effects of quantum flux density on photosynthesis and chloroplast ultrastructure in tissue-cultured plantlets and seedlings of Liquidambar styraciflua L. towards improved acclimatization and field survival. Plant Physiol 78:637-641. doi:10.1104/pp.78.3.637 10.1104/pp.78.3.63716664297PMC1064790
17
Lee S.G., J.H. Moon, Y.A. Jang, S.Y. Kim, and K.D. Ko 2009, Change of photosynthesis and cellular tissue under high CO2 concentration and high temperature in radish. Korean J Hortic Sci Technol 27:194-198. (in Korean)
18
Lee W.S., and S.G. Kim 2012, Development of the rotational smart lighting control system using artificial light for plant factory. J Korea Acad-Ind Coop Soc 13:1474-1479. (in Korean) 10.5762/KAIS.2012.13.4.1474
19
Li Q., M. Deng, J. Chen, and R.J. Henny 2009, Effects of light intensity and paclobutrazol on growth and interior performance of Pachira aquatic Aubl. HortScience 44:1291-1295. doi:10.21273/HORTSCI.44.5.1291 10.21273/HORTSCI.44.5.1291
20
Lian S., and A. Tanaka 1967, Behaviour of photosynthetic products associated with growth and grain production in the rice plant. Plant Soil 26:333-347. 10.1007/BF01880183
21
Lim J.T., S.Y. Baek, H.H. Jeong, H.K. Hwan, B.S. Kim, H.J. Chung, S.J. Lee, and B.S. Lee 2000, Mathematical models of photosynthetic rate of hydroponically grown cucumber plants as affected by light intensity, air temperature, carbon dioxide and leaf nitrogen content. J Bio-Env Con 9:171-178. (in Korean)
22
Makino A., and T. Mae 1999, Photosynthesis and plant growth at elevated levels of CO2. Plant Cell Physiol 40:999-1006. doi:10.1093/oxfordjournals.pcp.a029493 10.1093/oxfordjournals.pcp.a029493
23
Oh S., I.C. Son, H.W. Seung, and S.C. Koh 2016, Photosynthetic and growth responses of Chinese cabbage to rising atmospheric CO2. Korean J Agric For Meteorol 18:357-365. (in Korean) doi:10.5532/KJAFM.2016.18.4.357 10.5532/KJAFM.2016.18.4.357
24
Park S.W., S. An, and Y. Kwack 2020, Changes in transpiration rates and growth of cucumber and tomato scions and rootstocks grown under different light intensity conditions in a closed transplant production system. Protected Hort Plant Fac 29:399-405. (in Korean) doi:10.12791/KSBEC.2020.29.4.399 10.12791/KSBEC.2020.29.4.399
25
Piñero M.C., F. Houdusse, J.M. Garcia-Mina, M. Garnica, and F.M. del Amor 2014, Regulation of hormonal responses of sweet pepper as affected by salinity and elevated CO2 concentration. Physiol Plant 151:375-389. doi:10.1111/ppl.12119 10.1111/ppl.1211924152078
26
Poorter H. 1993, Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetatio 104:77-97. 10.1007/BF00048146
27
Poorter H., and O. Nagel 2000, The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Funct Plant Biol 27:595-607. 10.1071/PP99173
28
Rural Development Administration (RDA) 2012, Analysis standard for research in agriculture science and technology, RDA, Jeonju, Korea, pp 503-504. (in Korean)
29
Rural Development Administration (RDA) 2018, Climate change response food crop stable production technology, RDA, Jeonju, Korea, pp 15. (in Korean)
30
Rural Development Administration (RDA) 2020, Tomato, RDA, Jeonju, Korea, pp 11-14. (in Korean)
31
Rural Development Administration (RDA) 2021, Cucumber, RDA, Jeonju, Korea, pp 9-12. (in Korean)
32
Salisbury F.B. 1988, Approaching the photosynthetic limits of crop productivity. Exec Intell Rev 15:20-22.
33
Son K.C., and M.K. Kim 1998, Influences of indoor light, Temperature, absolute humidity, and CO2 concentration on the changes of transpiration and photosynthesis rate of Pachira aquatica and their statistical modeling. J Korean Soc Hortic Sci 39:605-609. (in Korean)
34
Steinger T., B.A. Roy, and M.L. Stanton 2003, Evolution in stressful environments II: adaptive value and costs of plasticity in response to low light in Sinapis arvensis. J Evol Biol 16:313-323. doi:10.1046/j.1420-9101.2003.00518.x. 10.1046/j.1420-9101.2003.00518.x14635870
35
Ting L., J. Yuhan, Z. Man, S. Sha, and L. Minzan 2017, Universality of an improved photosynthesis prediction model based on PSO-SVM at all growth stages of tomato. Int J Agric Biol Eng 10:63-73. doi:10.3965/j.ijabe.20171002.2580 10.3965/j.ijabe.20171002.2580
36
Um Y.C., Y.A. Jang, J.G. Lee, S.Y. Kim, S.R. Cheong, S.S. Oh, S.H. Cha, and S.C. Hong 2009, Effects of selective light sources on seedling quality of tomato and cucumber in closed nursery system. J Bio-Env Con 18:370-376. (in Korean)
37
Wang W.Z., M. Zhang, C.H. Liu, M.Z. Li, and G. Liu 2013, Real-time monitoring of environmental information and modeling of the photosynthetic rate of tomato plants under greenhouse conditions. Appl Eng Agric 29:783-792. doi:10.13031/aea.29.9743 10.13031/aea.29.9743
38
Yamori W., and T. Shikanai 2016, Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol 67:81-106. doi:10.1146/annurev-arplant-043015-112002 10.1146/annurev-arplant-043015-11200226927905
39
Zhang C.H., I.J. Chun, Y.C. Park, and I.S. Kim 2003, Effect of timings and light intensities of supplemental red light on the growth characteristics of cucumber and tomato plug seedlings. J Bio-Env Con 12:173-179. (in Korean)
Information
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Journal of Bio-Environment Control
  • Journal Title(Ko) :생물환경조절학회지
  • Volume : 32
  • No :4
  • Pages :257-266
  • Received Date : 2023-06-26
  • Revised Date : 2023-07-25
  • Accepted Date : 2023-08-12