All Issue

2023 Vol.32, Issue 4 Preview Page

Original Articles

31 October 2023. pp. 466-474
Abstract
References
1
Andrade C.A., K.R.D. de Souza, M. de Oliveira Santos, D.M. da Silva, and J.D. Alves 2018, Hydrogen peroxide promotes the tolerance of soybeans to waterlogging. Sci Hortic 232:40-45. doi:10.1016/j.scienta.2017.12.048 10.1016/j.scienta.2017.12.048
2
Bajgain R., Y. Kawasaki, Y. Akamatsu, Y. Tanaka, H. Kawamura, K. Katsura, and T. Shiraiwa 2015, Biomass production and yield of soybean grown under converted paddy fields with excess water during the early growth stage. Field Crop Res 180:221-227. doi:10.1016/j.fcr.2015.06.010 10.1016/j.fcr.2015.06.010
3
Bullock D., and D. Anderson 1998, Evaluation of the Minolta SPAD‐502 chlorophyll meter for nitrogen management in corn. J Plant Nutr 21:741-755. doi:10.1080/01904169809365439 10.1080/01904169809365439
4
Choi E.-Y., Y.-H. Yoon, K.-Y. Choi, and Y.-B. Lee 2015, Environmentally sustainable production of tomato in a coir substrate hydroponic system using a frequency domain reflectometry sensor. Hortic Environ Biotechnol 56:167-177. doi:10.1007/s13580-015-0036-y 10.1007/s13580-015-0036-y
5
Fehr W., and C. Caviness 1977, Stages of soybean development. Iowa Agriculture and Economics Experiment Station Special Report 80. Iowa State University, Ames, IA, USA.
6
Gao H., Y. Jia, S. Guo, G. Lv, T. Wang, and L. Juan 2011, Exogenous calcium affects nitrogen metabolism in root-zone hypoxia-stressed muskmelon roots and enhances short-term hypoxia tolerance. J Plant Physiol 168:1217-1225. doi:10.1016/j.jplph.2011.01.022 10.1016/j.jplph.2011.01.02221458885
7
Han K., H. Cho, H. Cho, H. Lee, J. Ok, M. Seo, K. Jung, Y. Zhang, and Y. Seo 2017, Effects of alternative crops cultivation on soil physico-chemical characteristics and crop yield in paddy fields. Korean J Environ Agric 36:67-72. (in Korean) doi:10.5338/KJEA.2017.36.2.11 10.5338/KJEA.2017.36.2.11
8
Harper J. 1994, Nitrogen metabolism. In KJ Boote, JM Bennett, TR Sinclair, GM Paulsen, eds, Physiology and Determination of Crop yield. ASA, CSSA, and SSSA Books, Madison, WI, USA, pp 285-302. doi:10.2134/1994.physiologyanddetermination.c19 10.2134/1994.physiologyanddetermination.c1925255364
9
He L., X. Ding, H. Jin, H. Zhang, J. Cui, J. Chu, R. Li, Q. Zhou, and J. Yu 2022, Comparison of rockwool and coir for greenhouse cucumber production: chemical element, plant growth, and fruit quality. Heliyon 8. doi:10.1016/j.heliyon.2022.e10930 10.1016/j.heliyon.2022.e1093036262298PMC9573875
10
Holtan-Hartwig L., M. Bechmann, T.R. Høyås, R. Linjordet, and L.R. Bakken 2002, Heavy metals tolerance of soil denitrifying communities: N2O dynamics. Soil Biol Biochem 34:1181-1190. doi:10.1016/S0038-0717(02)00055-X 10.1016/S0038-0717(02)00055-X
11
Hwang J., S. Yun, J. Kwon, M. Park, D. Lee, H. Lee, S. Lee, S. Lee, and Y. Hong 2022, Effects of coir substrate application and substrate volume on the growth and yields of strawberry in a hydroponically cultured system. J Bio-Env Con 31:163-169. (in Korean) doi:10.12791/ksbec.2022.31.3.163 10.12791/KSBEC.2022.31.3.163
12
Irfan M., S. Hayat, Q. Hayat, S. Afroz, and A. Ahmad 2010, Physiological and biochemical changes in plants under waterlogging. Protoplasma 241:3-17. doi:10.1007/s00709-009-0098-8 10.1007/s00709-009-0098-820066446
13
Jeong O.Y., H.S. Park, M.K. Baek, W.J. Kim, G.M. Lee, C.M. Lee, M. Bombay, M.B. Ancheta, and J.H. Lee 2021, Review of rice in Korea: current status, future prospects, and comparisons with rice in other countries. J Crop Sci Biotechnol 24:1-11. doi:10.1007/s12892-020-00053-6 10.1007/s12892-020-00053-6
14
Jung G., T. Matsunami, Y. Oki, and M. Kokubun 2008, Effects of waterlogging on nitrogen fixation and photosynthesis in supernodulating soybean cultivar Kanto 100. Plant Prod Sci 11:291-297. doi:10.1626/pps.11.291 10.1626/pps.11.291
15
Kaur G., B.A. Zurweller, K.A. Nelson, P.P. Motavalli, and C.J. Dudenhoeffer 2017, Soil waterlogging and nitrogen fertilizer management effects on corn and soybean yields. Agron J 109:97-106. doi:10.2134/agronj2016.07.0411 10.2134/agronj2016.07.0411
16
Kim J. 2023a, Has rice consumption reached a turning point? Available via https://www.krei.re.kr/krei/selectBbsNttView.do?key=109&bbsNo=75&nttNo=161689 Accessed 05 March 2023 (in Korean)
17
Kim D. 2023b, Increasing number of by-products from facility cultivation are 'processed in secret'… Urgent need for system improvement. Available via https://seogh.nonghyup.com/user/indexSub.do?siteId=seogh&framePath=unknowncomBoard&command2=boardView&handle2=2079396&configSeq=2079396&boardSeq2=5417653 Accessed 10 April 2023 (in Korean)
18
Kim K. 2022, An analysis of the economic effects of the pilot project for multiple-purpose utilization of paddy fields focusing on income and welfare changes. J Korean Soc Rural Plan 28:71-85. (in Korean) doi:10.7851/ksrp.2022.28.2.071 10.7851/ksrp.2022.28.2.071
19
Konnerup D., G. Toro, O. Pedersen, and T.D. Colmer 2018, Waterlogging tolerance, tissue nitrogen and oxygen transport in the forage legume Melilotus siculus: a comparison of nodulated and nitrate-fed plants. Ann Bot 121:699-709. doi:10.1093/aob/mcx202 10.1093/aob/mcx20229351575PMC5853006
20
Lee G., E. Park, Y. Park, K. Yeo, H. Rhee, and J. Kang 2016, Effect of recycled coir organic substrates on vegetable crop growth. J Environ Sci Int 25:1077-1085. (in Korean) doi:10.7584/JKTAPPI.2018.02.50.1.3 10.7584/JKTAPPI.2018.02.50.1.3
21
Lee K., D. Lee, G. Suh, S. Noh, S. Min, and D. Chung 2018, Changes of the physical structure and chemical properties of cocopeat influenced by the changes of the components of cocopeat. J Korea TAPPI 50:3-10. (in Korean) doi:10.7584/JKTAPPI.2018.02.50.1.3 10.7584/JKTAPPI.2018.02.50.1.3
22
Lee Y., S.-T. Lee, J. Heo, M.-G. Kim, K.-P. Hong, W.-D. Song, C.-W. Rho, J.-H. Lee, W.-T. Jeon, B.-G. Ko, K.-A. Roh, and S.-K. Ha 2010, Monitoring of chemical properties from paddy soil in gyeongnam province. Korean J Soil Sci Fert 43:140-146. (in Korean)
23
Lim M.Y., S.H. Choi, H.J. Jeong, and G.L. Choi 2020, Characteristics of domestic net type melon in hydroponic spring cultivars using coir substrates. Hortic Sci Technol 38:78-86. (in Korean) doi:10.7235/HORT.20200008 10.7235/HORT.20200008
24
Liu S., S. Zhou, H. Zheng, X. Zhu, and J. Yang 2009, Restoration dynamics after waterlogging of Carex thunbergii on leaf physiological indexes and above-ground nutritions. Acta Pratac Sin 18:83-88. doi:10.11686/cyxb20090213
25
Okada H., S. Niwa, S. Takemoto, M. Komatsuzaki, and M. Hiroki 2011, How different or similar are nematode communities between a paddy and an upland rice fields across a flooding-drainage cycle? Soil Biol Biochem 43:2142-2151. doi:10.1016/j.soilbio.2011.06.018 10.1016/j.soilbio.2011.06.018
26
Olorunwa O.J., B. Adhikari, S. Brazel, R. Bheemanahalli, T.C. Barickman, and K.R. Reddy 2023, Waterlogging stress reduces cowpea (Vigna unguiculata L.) genotypes growth, seed yield, and quality at different growth stages: implications for developing tolerant cultivars under field conditions. Agric Water Manag 284:108336. doi:10.1016/j.agwat.2023.108336 10.1016/j.agwat.2023.108336
27
Pan J., R. Sharif, X. Xu, and X. Chen 2021, Mechanisms of waterlogging tolerance in plants: research progress and prospects. Front Plant Sci 11:627331. doi:10.3389/fpls.2020.627331 10.3389/fpls.2020.62733133643336PMC7902513
28
Perata P., and A. Alpi 1993, Plant responses to anaerobiosis. Plant Sci 93:1-17. doi:10.1016/0168-9452(93)90029-Y 10.1016/0168-9452(93)90029-Y
29
Ploschuk R., D. Miralles, and G. Striker 2022, A quantitative review of soybean responses to waterlogging: agronomical, morpho-physiological and anatomical traits of tolerance. Plant Soil 475:237-252. doi:10.1007/s11104-022-05364-x 10.1007/s11104-022-05364-x
30
Puyang X., M. An, L. Xu, L. Han, and X. Zhang 2015, Antioxidant responses to waterlogging stress and subsequent recovery in two Kentucky bluegrass (Poa pratensis L.) cultivars. Acta Physiol Plant 37:1-12. doi:10.1007/s11738-015-1955-z 10.1007/s11738-015-1955-z
31
Ren T., R. Bu, S. Liao, M. Zhang, X. Li, R. Cong, and J. Lu 2019, Differences in soil nitrogen transformation and the related seed yield of winter oilseed rape (Brassica napus L.) under paddy-upland and continuous upland rotations. Soil Tillage Res 192:206-214. doi:10.1016/j.still.2019.05.008 10.1016/j.still.2019.05.008
32
Rhie Y.H., S. Kang, J.M. Choi, and J. Kim 2018, Physical and chemical properties of bottom ash and coir dust mix used as horticultural substrates. Hortic Sci Technol 36:161-171. doi:10.12972/kjhst.20180017 10.12972/kjhst.20180017
33
Saito T., S. Ishii, S. Otsuka, M. Nishiyama, and K. Senoo 2008, Identification of novel Betaproteobacteria in a succinate-assimilating population in denitrifying rice paddy soil by using stable isotope probing. Microbes Environ 23:192-200. doi:10.1264/jsme2.23.192 10.1264/jsme2.23.19221558708
34
Seneviratne G., L. Holm, and E. Ekanayake 1999, Effect of peat and coir dust-based rhizobial inoculants on the nodulation, plant growth and yield of soybean (Glycine max [L.] Merill) cv PB 1.
35
Takeshima R., S. Murakami, Y. Fujiwara, K. Nakano, R. Fuchiyama, T. Hara, T. Shima, and T. Koyama 2023, Subsurface drainage and raised-bed planting reduce excess water stress and increase yield in common buckwheat (Fagopyrum esculentum Moench). Field Crop Res 297:108935. doi:10.1016/j.fcr.2023.108935 10.1016/j.fcr.2023.108935
36
Trought M., and M. Drew 1980, The development of waterlogging damage in wheat seedlings (Triticum aestivum L.) II. Accumulation and redistribution of nutrients by the shoot. Plant Soil 56:187-199. 10.1007/BF02205847
37
Uchida Y., Y. Wang, H. Akiyama, Y. Nakajima, and M. Hayatsu 2014, Expression of denitrification genes in response to a waterlogging event in a Fluvisol and its relationship with large nitrous oxide pulses. FEMS Microbiol Ecol 88:407-423. doi:10.1111/1574-6941.12309 10.1111/1574-6941.1230924592962
38
Wang M., Q. Shen, G. Xu, and S. Guo 2014, New insight into the strategy for nitrogen metabolism in plant cells. Int Rev Cell Mol Biol 310:1-37. doi:10.1016/B978-0-12-800180-6.00001-3 10.1016/B978-0-12-800180-6.00001-324725423
39
Wollmer A.C., B. Pitann, and K.H. Mühling 2018, Waterlogging events during stem elongation or flowering affect yield of oilseed rape (Brassica napus L.) but not seed quality. J Agron Crop Sci 204:165-174. doi:10.1111/jac.12244 10.1111/jac.12244
40
Yasumoto S., Y. Terakado, M. Matsuzaki, and K. Okada 2011, Effects of high water table and short-term flooding on growth, yield, and seed quality of sunflower. Plant Prod Sci 14:233-248. doi:10.1626/pps.14.233 10.1626/pps.14.233
41
Yordanova R., and L. Popova 2001, Photosynthetic response of barley plants to soil flooding. Photosynthetica 39:515-520. 10.1023/A:1015643710177
42
Yordanova R.Y., K.N. Christov, and L.P. Popova 2004, Antioxidative enzymes in barley plants subjected to soil flooding. Environ Exp Bot 51:93-101. doi:10.1016/S0098-8472(03)00063-7 10.1016/S0098-8472(03)00063-7
43
Zhou W., F. Chen, Y. Meng, U. Chandrasekaran, X. Luo, W. Yang, and K. Shu 2020, Plant waterlogging/flooding stress responses: from seed germination to maturation. Plant Physiol Biochem 148:228-236. doi:10.1016/j.plaphy.2020.01.020 10.1016/j.plaphy.2020.01.02031981875
Information
  • Publisher :The Korean Society for Bio-Environment Control
  • Publisher(Ko) :(사)한국생물환경조절학회
  • Journal Title :Journal of Bio-Environment Control
  • Journal Title(Ko) :생물환경조절학회지
  • Volume : 32
  • No :4
  • Pages :466-474
  • Received Date : 2023-10-26
  • Revised Date : 2023-10-28
  • Accepted Date : 2023-10-30